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ABSTRACT 

The minimax solution is found for a game in which player I chooses a real 
number and player II seeks it by choosing a trajectory represented by a positive 
function. 

1. Introduction and presentation of main results 

The Linear Search Game solved by Beck and Newman [1] and the extensions 

treated by the author 1-3] are special cases of the following game: 

Player I chooses a number - ~  < t < ~ and player II chooses a positive 

function r(t) which will be called: "The  search trajectory".  The loss of  player II is 

f_~ r(t + O)dA(O) 

(1) M(r( t ) , t )  = r(t) 

where A(O) is the distribution function of  a (fixed) positive measure. We shall 

show that the exponential function 

(2) r(t) = C e  b' 

is a (pure) minimax search trajectory of  player II. We shall also find conditions 

under which (2) is the unique solution, up to a multiplicative constant. 

Our main results are the following: 

THEOREM 1. Let  A(O), - oo < 0 < oo, be any  non-decreasing funct ion .  Le t  

r(t),  - oo < t < oo, be a positive func t ion  which is integrable on every f in i te  

interval. I f  
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s s(t) = (t + O)dA(O) (3) 

is defined for  all real t, then 

s(t) f _ ~ e  (4) lim sup r(t) > inf bgA(O) 
t - * - ~  -oo___b_.oo 

and 

(4') 

THEOREM 2. 

that A(O) is not concentrated at 0 = O. Let 9(b) be the Bilateral Laplace Trans- 

form of  A(O) defined as follows: 

s(t) f:o  lim sup r(t) > inf e b~ 
t-* +oo - o o  ~b_-<oo 

Let A(O) and r(t) be defined as in Theorem 1. In addition assume 

(5) 9(b) = f:o~ eb~ 

Assume that 9(b) attains its minimum at a point - ~ < [~ < Go so that 

f_~ Oe s~ = O. (6) 

If 

_r(t  + O)dA(O) 
sup < g(b) 

-~<t<oo r(t) (7) 

then 

(a) 

(b) 

I f  A(O) is not arithmetic*, r(t) = Ce ~t a.s. where C is any constant. 

I f  A(O) is arithmetic with span 2, r(t) = C(t)e ~t where C(t) is a periodic 

function having period 2. 

Both Theorems 1 and 2 hold for the discrete case (i.e. where A(O) and r(t) are 

replaced by positive sequences). A detailed formulation of the discrete version 

will be given in Chapter 4. 

Chapter 5 will contain some examples which will clarify the use of the theorems. 

A vivid illustration of  the application of  the theorems for several search games 

is presented in I-3]. 

* We use arithmetic in the sense used in Feller [2], namely: A distribution A is arithmetic 
if it is concentrated on a set of points of the form 0, 4-2, -t- 22 .... The largest 2 with this prop- 
erty is called the span of A. 
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2. Three fundamental Lemmas 

LEMMA 1. Let  P(O), - oo < 0 < o% be the distribution funct ion o f  a proba- 

bil i ty  measure which is not concentrated at 0 = o, satisfying: 

(8) f [ j P ( O )  = o 

and let w(t), - oo < t < oo, be a positive funct ion which is integrable in each 

f ini te segment. I f  

(9) 

is defined for  each t, then 

(10) 

and 

(10') 

PROOF. 

If t) 
lim sup w(t) > 1 

t ~ + Q o  

l(t)  > 1. 
lim sup w( t) = 

t--~-- oo 

First we note that on grounds of symmetry, it is enough to establish (10). 

We may assume that 

(11) P(O) has no positive probability mass at the origin (otherwise we can 

consider the conditional probability measure P(O/O # 0)). 

The proof is given in three stages: 

(a) First we prove (10) under two additional conditions viz: 

(12) w(t) is continuous, and 

(13) P(O) is supported by a finite segment [ - L, L] (L > 0). 

In case either 

(14) 

o r  

(15) 

lim inf w(t) _ oo 
t--, + oo t 

lim inf w(t) = 0 
t ~  -I- oo 

holds, we define w*(t) to be the maximal convex function satisfying 

(16) w*(t) < w(t), for all t > 0. 

Condition (14) (or (15)) implies that for each t there exists a t 1 > t satisfying 

(17) w*(q)  = w(q) .  
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It follows from (8) that 

(18) l(t 1) > w*(tl) = w(ti) 

so that (10) holds. Therefore, we may assume that 

lim inf w(t) = C < oo 
t.~o0 t 

(19) 

and that 

(20) lim inf w(t) > O. 
t -'* ct2 

If (10) were false, there would exist a T such that for all t ~ T 

(21) l(t) < dw(t), 0 < d < 1. 

It follows from (21) that for each t > T, there exists an at satisfying 

(22) w(at) < dw(t) 

where 

(23) [at - t[ < L (L being defined by (13)). 

It follows from (19) that for each t > T, there exists a t 1 > t satisfying 

w(tx) < (C + e)t l .  (24) 

Let 

(25) n = [ ( t ,  - 7 " ) / L ] .  

By applying (22) n times, we find a t2 > 0 satisfying 

(26) W ( t 2 )  < d"w(q) < d (t' - r -L ) /L (C  + 8 ) t  1 . 

It follows from (26) that: 

(27) inf w(t) = O. 
O ~ t  <oo 

35 

(28) 1 f_:w(t w~(t) = ~ + O)dO. 

where w~ is a continuous positive function. Let 

This contradicts (20) and establishes the result. Q.E.D. 

(b) In this part we eliminate condition (12). Let w(t) be any positive function 

which is integrable in each finite segment. Define 
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ffLw,(t l ff l(t+O)dO. (29) l,( t) = + O)dP( O) = -~ 

If  (10) were false then there would exist 6 > 0 and to < + oo such that for each 

t > t o , l(t) < (1 - 6)w(t). But then for each t > to + e, we would have 

(30) l~(t) < (1 -6)w,( t )  

which contradicts the result established in part (a). 

(c) In this part we eliminate condition (13). We consider the case where 

P(0) is not supported by a finite segment. We may assume that P(O) is not supported 

by ( - oo, L) where L is finite. Condition (8) then implies that for each positive 

integer n it is possible to find a negative number d. such that 

(31) OdP.(O) = 0 
r l  

where P.(O) is a positive measure dominated by P(0) such that the measure of 

any segment [a, b] where d. < a < b < n is the same under P and P . .  Let 

~ " (0) dP. = F. .  
n 

It follows from condition (8) that 

(32) 

Hence 

lim F.  = 1. 
n ---~ O0 

f2 w(t + O)dP(O) w(t + O)dP.(O) 
n 

(33) lira sup w(t) > lim sup w(t) 
t ~ + o o  t ~ + c o  

fd "w(t + O) dP.(O) 
. Fn 

= F. lim w(t) > F. 
t"* + ~ 

for each n. Now, (10) can be obtained from (32) and (33). 

By a similar method we can prove: 

LEMMA 1 A. 

satisfying 

(34) 

I f  P(O) is the distribution function of a probability measure 

Q.E.D. 

~_~oOdP(O) < 0 (respectively, f?~ OdP(O) > O) 

and w(t) and l(t) satisfy the conditions of Lemma 1, then 
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(35) lim sup (l(t) -- w(t)) > 0 (respectively, lim sup(/(t) -- w(t) > 0). 
t ' ~  - -  oo  t - *  + oO 

I f  P(O), w(t) and l(t) satisfy the conditions of  Lemma 1 and 

l( t )< w(t) for all - o o < t < o o ,  

LEMMA 2. 

(36) 

then 

(a) 
(b) 

37 

and 

(38) y, = w(sn). 

Condition (36) implies that {Yn} is a positive submartingale. Hence there exists a 

random variable y such that 

(39) y,, ~ y with probability 1. 

We distinguish betwee two cases: 

(a) P(O) is not arithmetic. 

In this case (8) implies that the random walk defined by (37) visits every interval 

infinitely often, with probability 1. This together with (39) implies that if w is a 

continuous function, then it has to be a constant. 

If  w is not continuous, we define 

(40) w~(t) = -2e w(t + O)dO. 
g 

Thus defined, w, is a continuous function satisfying the conditions of the lemma 

and so must be a constant C~. It is easily verified that C~ has the same value C, 

for each e, so that for all real t 

(41) l im w,(t) = C. 

On the other hand 

(42) lim w,(t) = w(t) 
t: " *  O 

a.s. 

I f  P(O) is not arithmetic, then w(t) = C a.s. 

I f  P(O) is arithmetic with span 2, then w(t) is periodic having period 2. 

PROOF. Define a sequence z,., i = 1,2,. . .  of independent random variables 

each of them having the distribution P. Let us denote 

(37) s, = ~ z~ 
1 
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which implies that w(t) = C a.s. This proves part (a) of  Lemma 2. 

(b) P(O) is arithmetic with span 2. 

In this case (8) implies that the random walk defined by (37) visits every point 

j .  2 (where j is any integer) infinitely often, with probability 1. Hence, (39) 

implies that w(j  �9 2) has the same value for each integer j. 
In the same manner we can define: 

yn = w(a + sn), where a is any real number and deduce that w(a + j 2 )  has the 

same value for every integer j.  Q.E.D. 

It should be noted that a similar result appears as a corollary in I2, p. 382]. 

The main differences are that in 1'2], w(t) has to be bounded and there is an equality 

sign in (36). Instead of  these requirements we impose condition (8). We now 

show that Condition (8) is necessary for the validity of the result of Lemma 2. 

].,EMMA 3. Let  P(O) - oo < 0 < oo, be a probabi l i t y  measure sat is fying 

(43) 

then there 

w(t) which satisfies: 

(44) w(t + O)de(O) <= w(t), 

PROOF. We may assume that 

?ooOdP(O) # O, 

exists  a non-constant,  positive, continuous and bounded func t ion  

f o r  all - ~ < t < ~ .  

(45) J_~oOdP(O) < O. 

Define a sequence zi, i = 1,2, ... of  independent random variables each of  them 

having the distribution P. Let us denote 

n 

(46) sn = E z,. 
1 

Define 

(47) w ( t ) = e ( s  n >  - t  for some n > l ) ,  - m < t < o o .  

It follows from the strong Law of Large numbers and (45) that 

(48) lim w(t) = 0 
t..-~ - -  oO 

while obviously 
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(49) lim w(t) = 1. 
t---~ OO 

Thus, w(t) is non-constant. Let us denote 

l(t) = P(s, > - t for some n > 2) (5O) 

then obviously 

(51) 

On the other hand 

l(t) < w(t). 

39 

f _ ~ P ,  > - t - O  for some > 1)dP(O) l ( t )  = ( s .  = n = 

(52) 

= f _ ~ w ( t +  O)dP(O). 

Hence w(t) satisfies (44). 

I f  w(t) is continuous then it is the desired function. I f  not, define 

(53) w~(t) = ~-~ w(t + y)dy, for some ~ > 0. 
8 

we(t) is a continuous function. We shall show that it satisfies (44): 

w(t) = ~ w(t + y)dy 

1 f*_ f _w(t+ y +O)dP(O)dy (by(51) and(52)) > 2--e 

= ooze e ~ w(t + y + O)dydP(O) (because w(t) > O) 

Lw = ~(t + O)dP(O) Q.E.D. 

3. Proofs of the theorems 

We now present the proofs of the Theorems presented in the introduction. 

PROOF OF THEOREM 1. Let us denote the restriction of A(O) to the segment 

[ - L, L] by AT,. We may assume that for each positive (finite) number L 

(54) (L  dA(O) < oo. 
d-L 
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Instead, if  for a certain L, fZ_tdA(O ) = oo then the positivity of  r(t) implies 

lim sup (s(t))/(r(t)) = oo, so that (4) and (4') hold. 
t"*-4-oO 

(55) 

and 

gL(b) = f :L  eb~ 

qL = inf gL(b) 
- o o  <b~_oo 

hr = lim sup 
t-.-o~ r( t) 

p o o  

g(b) = j-oo eb~ 

q = inf #(b) 
- o o  < b  <oo 

s(t) 
h = lim sup 

v-.- ~o r(t) 

Define 

(56) 

First we show that for each positive L 

(57) hL ~-- qn" 

f_ L r(t + O)dAL(O ) 
L 

We note that (54) implies that #L(b) is finite for each - c~ < b < ~ .  I f  At. is 

supported by the segment [0, L] or by [ - L, 0], then qL = 0 and (57) obviously 

holds. Hence we may assume that AL is not supported by any of  these intervals. 

In this case, 9I.( - oo) = co and gL( + ~ )  = oo. gr.(b) is a differentiable positive 

function. I f  we denote its_minimum point by bL, then 

e L  
(58) J-n  Oe~L~ dAL(O) = #L([~L) = 0. 

Define a probability measure PL(O) by 

(59) 

It follows from (58) that 

(60) 

CBL# 
d_P,.(O) = dAL(O). 

qL 

f?z OdP~.(O) = O. 
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If  w(t) is defined by w(t) = r(t) e-  s~', then w(t) satisfies the conditions of Lemma 1 

and this together with (59) and (60) imply that 

f?L  r(t + O)dAL(O) 1 
lim sup 

t - .  - ~ r ( t )  qL 

f_ " w(t e~L~'+me - ~L~ + O) 
L lim sup " 

This proves (57). 

We shall now prove that 

(61) 

wft) e L, 

L w(t + O)dPL(O) 
lira sup a - L  > 1. 

w ( t )  - 

h>=,q. 

where h and q are defined by (56). Assume that q > 0, then 

(62) the measure A is not supported by a half line (0 __> 0 or 0 < 0). 

Taking L = 1,2,... n, ... in (58), we distinguish between two cases: 

(a)  b.  -~ + oo (or  b.  ~ - oo) .  

In this case it follows from (62) that 9,(b,) --* + oo and (57) implies that hL ~ + oo 

so that h = oo. 

(b) b , ,~  + oo (or - oo) 

In this case we can choose a subsequence nk ~ oO such that 

(63) b , ~ b .  # + ~ .  
k-~oo 

It follows from (55) and (56) that for any b, 

(64) gL(b) t g(b) as L ~ oo. 

This inequality together with (57) implies that for all k > m, 

(65) h > h,~ > 9,k(b,k) > O,,.(b,k). 

Since g,,.(b) is continuous, it follows from (65) that for each n,,, h > g,m(b~). 

This together with (64) implies that h > g(b~) > q. Q.E.D. 

PROOF OF TUEOREM 2. Define a probability measure P(O) and a positive 

function w(t) by: dP(O) = (e ~~ Io(b))dA(O) and w(t) = r(t) e-  ~'. 
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Since w(t) and P(O) satisfy the conditions of Lemma 2, it follows that w(t) = C(t) 

where c(t) is a.s. a constant in case (a) and a periodic function in case (b). 

Q.E.D 

Note that if 9(b) is finite in an interval that includes b then condition (6) is 

satisfied. Lemma 3 implies that condition (6) which assures us that r(t) is unique 

(up to multiplication by a positive function) is necessary. We shall return to 

this point in the examples of  Chapter 5. 

4. Discrete versions of  the theorems 

Both Theorem 1 and Theorem 2 hold for the discrete case. For  brevity we state 

explicitly only the discrete version of Theorem 1. 

THEOREM 1A. Given two sequences aj > O, X j > O, - oo < j < co. Then 

~tjX i + J 
(66) lim sup j=-oo > inf ~ ~ja j =  q 

~ _ ~  X ;  - o _ ~ a ~ o o  j = - ~  

and 

~jXi+j 
(66') l imsup j=-oo > q. 

i~+oo Xi 

PROOF. Define a discrete measure A(O) such that the measure of  the point 

0 = j is ~j and the measure of  any interval not containing integral points is zero. 

Define r(t) to be the following step function: r ( t ) - - X /  for i - 1  < t < i, 

- oo < i < ~ .  Thus defined, A(O) and r(t) satisfy the conditions of  Theorem 1. 

Hence inequalities (66) and (66') hold. Q.E.D. 

It should be noted that the right side of (4) and (66) in Theorems 1 and 1A 

must include the end points (b = _+ ~ ,  a = 0, ~ ) .  Otherwise the theorems would 

not be true when q = oo. We show this by an example, which corresponds to 

Theorem 1A. Define ~j = 2 J2 for j < - 1 and 0tj -- 0 for j > 0. Then 

- 1  

inf ]~ 2J2a j = oo. 
0 < a ~ : ~  - o o  

On the other hand, for any ~ > 0 we can find a sequence {X~} so that 

- 1  

~, 2J2x,+j 

(67) sup - ~ < e. 
- o o < i < o o  Xi 
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For  example we can choose X i = (2N) -/:for i ~ - 1 where N is a number to be 

determined later. If  i < 0, then 
- 1  - 1  

~, 2J2(2N) -"+j)~ E 2J~(2N) -i~-j~ 
- c o  ~ - o o  

(2N)- ' :  (2N) _~2 

- 1  

< Z N - J 2 < e  

for sufficiently large N. It remains to note that for i > 0, we can define X~ re- 

cursively so that (67) will hold for all i. 

5. Examples 

(a) Let A(O) be an absolutely continuous measure defined as follows: 

~dO for 0 > 1 

dA(O) = 0 for 1 > 0 > - 1  

2d - 2 
dO for O < - 1  

0 a 

where 0 < d < 1. Let r(t) be a positive measurable function. The Bilateral 

Laplace Transform of A(O), g(b) defined by (5) is finite only for b = 0 so that b 

as defined by Theorem 2 is equal to 0 and 9(b) = 1. Assume that condition (7) 

is satisfied, i.e., 

f_~r(t + O)dA(O) 
(68) sup r(t) < 1. 

--00 < t  <00 

If  d = 1[2, then condition (6) is satisfied and Theorem 2 then implies that 

r(t) = C a.s. 

I f  d ~ 1/2, then Lemma 3 implies that there exists a non-constant, continuous 

and bounded function r(t), satisfying (68). 

(b) Let A(O) be defined as follows: 

The measure of the point 0 = 1 is d where d > 0 and if 0 # 1 then 

dA(O) = 

- - ~ d O  f o r 0 <  - 1  

0 ~ r - l < 0 < l  

and for 0 > 1. 
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Let r(t) be a positive function and assume that (7) holds. We note that g(b) is 

finite for b > 0 and satisfies 

(69) 

f _ ~  e bO 
9(b)  = de  b - -03-dO 

1 

dg( b ) = d e  b dO. 
db - -O r 

Since g is a concave function it follows that if 

d g ( b ) > o  at b = 0  (70) db - 

then b = 0 and if 

(71) dg(b)  . < 0  a t b = O  
db 

then 0 < b < oo. 

Inequality (70) is equivalent to d > 1. Thus if d < 1, then (6) holds and r(t) = 

C- e~ta.s. 

On the other hand if d > 1, then b = 0 and Lemma 3 implies that there are 

other functions besides the constant functions which satisfy (7). 

(c) Let X~,-  oo < i < ~ ,  be a positive sequence. It follows from Theorem 1A 
that 

(72, l imsup X i - ~ + X i + l  > inf  ( l + a ~ = 2 .  
i-.* ~oo X i  - -  O <_a <_ oo \ a  ! 

The discrete version of Theorem 2 implies that if 

X i - x  + X;+I 
sup - 2. 

- ~ < i < o o  X i  

then Xi = C. This is a well known result. I f a  positive sequence X i , - oo < i < oo, 

is concave, then X~ = C. 

On the other hand, it is obvious that the condition: 

sup 
i>io S ~  

Xi-1 + Xi+t 
= 2 where io is any fixed integer 

does not imply that the sequence is constant for i > io. 

(d) Let Xi - oo < i < oo be a positive sequence. It follows from Theorem 1A 

that 
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i+I  
E Xj 1 

(73) lim sup -~-~---- > inf ~ a j =  4. 
i-,+m Xt  - 0 < a ~ o  j=--~o 

The discrete version of Theorem 2 implies that if 

i •  
E xj  

sup j=-~o = 4 
- m < i < m  S i  

then X i = C. 2 i. 
This particular result was established in [1] in connection with the optimal 

pure strategy for the Linear Search Game. 

ACKNOWLEDGEMENTS 

The author would like to express his gratitude to Professor A. Dvoretzky for 

the supervision of this paper and also to Professor S. Samuels for an improved 

version of Lemma 3. 

REFERENCES 

1. A. BECK AND D. J. NEWMAN, Yet more on the linear search problem, Israel J. Math. 8 
(1970), 419-429. 

2. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, 1966. 
3. S. GAL, Minimax solutions for linear search problems, to be published. 

DEPARTMENT OF STATISTICS 
TEL AVIV UNIVERSITY 


